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2-Alkeny 1 Anions and Their Surprising Endo 
Preference. Facile and Extreme Stereocontrol over 
Carbon-Carbon Linking Reactions with Organometallics 
of the AHyI Type 

Sir: 

Allyl type organometallic compounds merit special attention 
on account of their potential in the field of organic synthesis.1 

Of particular interest is their stereoselective and regioselective 
behavior. Organometallic compounds of the allyl type, pre­
viously hardly known,2 became easily available through alkene 
metalation with butyllithium in the presence of potassium 
/err-butoxide3"5 or with trimethylsilylmethylpotassium.6,7 

Spectral8,9 and chemical5-10 evidence are in good agreement 
with a "contact pair" ("contact species") structure11 and rule 
out the presence of (solvent-separated) ion pairs or even free 
carbanions in substantial concentrations. Z-Isomers ((Z)-I) 
may be converted into the corresponding £-isomers ((E)-I) 
and vice versa, as was previously established for Grignard12 

and lithium13 compounds. New and astonishing, however, is 
the observation1'4,5'10 that allylpotassium derivatives undergo 
such configurational changes only very slowly,14 half-lives of 
pure isomers falling in the range of hours at normal tempera­
tures in the case of simple hydrocarbon derivatives. 
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Most surprising was the finding that butenyl-,5 hexenyl-,5 

2-methyl-butenyl-,15 and other alkenylpotassium com-
pounds1'5,16 drastically favor the Z-configuration. Although 
base-catalyzed alkene isomerizations17 have been known to 
be highly cis selective, this does not necessarily imply an ex­
ceptional thermodynamic stability of the intermediary endo-
(cis)-alkenyl carbanion, since these isomerizations occur under 
kinetic control and thus may .merely reflect differences in the 
hydrogen transfer mechanisms for cis- and trans-alkene for­
mation.18,19 Furthermore the Z preference of alkenylpotassium 
compounds may be, but do not have to be, related to the strong 
tendency of 1-phenylbutenylpotassium20 to accommodate the 
terminal methyl group in an endo(cis) position. In liquid am­
monia,20 the phenylbutenylpotassium probably forms a sol­
vent-separated ion pair and it benefits from extensive charge 
derealization. Therefore, fundamental dissimilarities with 
alkenylmetal compounds should still be envisaged. For in­
stance, the electron excess of the 1-phenylbutenyl anion could 
mainly reside in the aromatic ring and thus make the carbanion 
(limiting structure 2) resemble the Z-crotonitrile (3) which 
is known to be more stable than the corresponding £-isomer.21 

In order to gain deeper insight into the stereochemical behavior 
of alkenylmetal compounds, we investigated the effects of the 
organic part, the metal, and the solvent on the equilibrium 
position. 
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In general, the Z/E equilibrium for each system was es­
tablished by the metalation of each of the pure olefin isomers. 
The resulting reaction mixture was stirred until the equilibrium 
point was reached (at least 24 h in tetrahydrofuran22), oxirane 
was then added and the derived isomeric alcohols were ana­
lyzed by gas phase chromatography.23 The Z/E ratios of the 
product mixtures should be equal to the Z/E ratios of the or­
ganometallic precursors provided that product yields are high 
and a/7-ratios (oxirane attack at the vinylogous vs. the ter­
minal position of the allylic system) observed for both confi-
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Table I. Z/E Equilibrium Composition of 2-Alkenylmetallic compounds RCH=CHCH2M in Hexane Solution or Suspension (in 
parentheses: in tetrahydrofuran), as Reflected by the Z/E Isomeric Composition of Derivatives Obtained by Quenching with Oxirane 

M = H M = MgBr" M = Li* M = Na'' M = K< M = Cŝ  

R = CH3 

R = CH2CH3* 
R = CH(CHj)2 

R = C(CH3)3 

23:77^ 
29.71 d 

26:14d 

0.1:99.9' 

54:46 
39:61 
23:77 
0.2:99.8 

67:33(85:15)* 
24:76 (80:20)* 
14:86 
3:97 (4:96)f 

93:7 
61:39(85:15) 
38:62 
7:93 (8:92) 

96:4 (99.2:0.8) 
94:6 
56:44(78:22)* 
8:92(13:87) 

99.9:0.1/ 
90:10 
66:34 
9:91 (12:88) 

" Data taken from ref 25a; experimental details (temperature, e.g.) unknown. * Equilibrium established at 0° and in ether rather than in 
petroleum ether. c Equilibrium established at —48°. d Ratio computed from thermochemical data published in "Handbook of Chemistry 
and Physics", 52d ed, Chemical Rubber Company, Cleveland, Ohio, 1971, p D-76. e In tetrahydrofuran solvent-separated ion pairs might 
be present to a certain extent. f No products with trans configuration were detected. «R = CH2CH2CH3 instead of R = CH2CH3 for M = 
Li, Na, K, and Cs. h Equilibrium established at —30°. ' Ratio estimated on the basis of known heats of hydrogenation26 and typical entropy 
differences between Z- and f-alkenes."' 

gurationally isomeric alkenylmetal compounds are either small 
or identical. Normally this happens to be the case24 and under 
such favorable circumstances chemical derivatization seems 
to give more accurate and less ambiguous information about 
the Z/E- isomeric composition of organometallics than spec­
troscopic methods.25 

From the tabulated results two major conclusions can be 
drawn. First, in each alkenyl series (same R) the Z/E ratio 
increase with increasing electropositivity of the metal (Li < 
Na < K < Cs). In our opinion this trend provides convincing 
evidence for the hypothesis that cis stereoselectivity of alk-
enylmetallic compounds does not have its origin in special 
binding features of the metal27 but is due to inherent properties 
of the underlying allyl carbanion. As chemical reactivity9'28 

as well as electronic excitation29 clearly demonstrated, the 
properties of resonance-stabilized organometallic contact pairs 
approach closer and closer to those of true (= free) carbanions 
as the metal is varied from the less electropositive (magnesium, 
lithium) to the more electropositive (rubidium, cesium). As 
one would expect, enhanced peripheral9 solvation of the metal 
has the same effect. 

Secondly, the endo preference is not particularly dependent 
on the electronic capacity or the bulk of the alkyl group R. 
At configurational equilibrium, all alkenylpotassium mixtures 
contain significantly more Z-form than do the corresponding 
alkenes. A "bonus" (AAGZ/E

M=K/M=H) of 3.0, 1.7, 1.8, and 
3.1 kcal/mol for the enhanced thermodynamic stability of 
the organometallic Z-isomer (in tetrahydrofuran solution) 
was computed on the basis of comparison between the con­
figurational stabilities of the alkenylpotassium compounds 
(AGZ/E

M=K) with those (AGZ/E
M=H) of the hydrocarbons 

from which they were derived (2-butene, 2-pentene, 4-
methyl-2-pentene, and 4,4-dimethyl-2-pentene, respectively). 
Moreover, trimethylsilylallylpotassium30 (4b) showed a quite 
similar stereochemical behavior as the isologous 4,4-di-
methyl-2-pentenylpotassium (4a): Z/E = 5:95 and 10:90 in 
hexane and tetrahydrofuran, respectively. 
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The observed "endo preference" must mainly be attributed 
to attractive forces working between the alkyl groups and the 
negatively charged methylene terminus.31 At first sight their 
origin seems to be most satisfactorily explained by a symme­
try-allowed hyperconjugative 7r-interaction (5; indicated is the 
highest occupied molecular orbital of a delocalized 6x-system). 
We favor, however, another description32 which is based on 
the assumption of hydrogen bonds between the alkyl groups 
and the electron-rich terminal carbon atom (as in 6). Consis­
tent with this view is the relative insensitivity of the endo 

preference to the individual nature of the alkyl group. This fact 
argues against the hyperconjugative model which would pre­
dict more pronounced variations in the series butenyl-, 4,4-
dimethylpentenyl-, and trimethylsilylallyl anion because of the 
differences in CH-, CC-,33 and SiC34-hyperconjugative effi­
ciency. 

Intramolecular hydrogen bonding has been invoked in order 
to take into account the unusual properties of 2-methylpyridine 
TV-oxide35 and 2-chlorophenol.36 Moreover this concept could 
help to rationalize the exceptional gas phase acidities of 2-
methylphenol and 2-rerr-butylphenol.37 
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Crossed Molecular Beam Measurement of the Intrinsic 
Activation Barrier for the Endoergic Reaction 
Hg + I2 — HgI + I 

Sir: 

We report an accurate experimental determination of the 
threshold energy for a neutral atom-diatomic molecule ex­
change reaction. From this measurement and the known en-
doergicity of the reaction the intrinsic activation barrier is 
directly obtained.1 

We have studied the endoergic reaction of ground state Hg 
atoms with I2 in the vicinity of the reaction threshold via the 
crossed molecular beam technique. Based on the experimental 
threshold energy the intrinsic activation barrier has been de­
termined to be essentially zero (within 1 kcal mol-1). This 
experimental result is to be contrasted with the substantial 
barrier energies (usually tens of kilocalories) inferred for many 
gas phase reactions from bulk kinetic studies. 
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Figure 1. Translational energy dependence of the yield of HgI. Circles and 
squares denote data sets with different distributions of reactants' trans­
lational energy. The solid and dashed curves are the calculated fits (see 
text) to the circles and squares, respectively, using the "best" experimental 
(translational) threshold £th =1.14 eV, indicated by the arrow. 

The HgI product from the reactive scattering of a seeded 
supersonic nozzle beam of Hg by a beam of I2 was measured. 
The yield of scattered HgI was determined at ten values of the 
average collision energy, £ tr, from 0.9 to 1.5 eV, and was found 
to increase monotonically with translational energy over this 
range.2 The reaction threshold energy was then determined 
through comparison of the experimental reactive yield with 
that calculated by convoluting an Arrhenius (line-of-centers) 
cross section functionality with the known distribution of 
reactants' relative kinetic energy (at each £\r). The results of 
two separate series of experiments are displayed in Figure 1. 
This procedure leads to a total energy threshold for reaction 
of 1.18 ± 0.03 eV. Since the endoergicity of the reaction is 
A£o° = 1.15 ± 0.01 eV (using the recently reevaluated 
D0[HgI) = 0.39 ± 0.01 eV3), this result implies an intrinsic 
activation barrier of 0.03 ± 0.03 eV. 

This study of the reactive scattering of Hg by I2 is an ex­
tension of previous work4 in this laboratory, in which the elastic 
scattering of the same system was investigated. The apparatus 
is essentially unchanged. Briefly, it consists of a supersonic 
nozzle beam of Hg (1 Torr) seeded in a variable excess (70-150 
Torr) of H2, a crossed beam of iodine from a multichannel 
array source (363 K), and a rotatable (in-plane) detector, 
which includes a high efficiency electron bombardment ionizer, 
quadrupole mass filter, and a channel electron multiplier op­
erated in the pulse-counting mode. The mercury atoms are 
accelerated to hyperthermal velocities (most-probable speed, 
cm.p.,'in the range 1200-1600 m s_1). The velocity distribution 
of each of the ten mercury beams was measured via the time-
of-flight (TOF) technique with a beam monitor consisting of 
an electron bombardment ionizer and a quadrupole mass filter 
mounted opposite the nozzle beyond the main scattering 
chamber. The velocity distribution of the I2 (vm.p. = 245 m s-1) 
was measured with this monitor placed opposite the array. The 
distribution of relative kinetic energy is thereby experimentally 
determined for each value of En at which scattering is ob­
served. 

The angular distribution of the HgI scattered in the plane 
of the incident beams is measured at each experimental energy. 
The distributions are essentially isomorphic, exhibiting peaks 
at lab angles of about 10° with respect to the Hg beam. An-
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